EQUATION FOR NONSTEADY-STATE COMBUSTION
VELOCITY OF A POWDER

B. V. Novozhilov

An integral equation is obtained for the nonsteady~state combustion velocity of a powder.
It is shown that the effect of a variable tangential stream of gases on the rate of burning
(nonsteady-state erosion) can be calculated in a similar way as for the change of pressure,
The solution of the equation in linear approximation ig considered (rate of burning differs
slightly from steady-~state).

The majority of papers on the theory of nonsteady~-state combustion of a powder are based on the idea,
first expressed by Ya. B. Zel'dovich [1], concerning the principal role of the inertness of a preheated layer
of the condensed phase (the inertness of all processes, with the exception of thermal conductivity in the
solid powder, can be neglected with good accuracy). It is shown in this approximation [2] that nonsteady-
state processes during the combustion of powders can be calculated by solving the heat conductivity equa~
tion in the condensed phase for a given initial temperature distribution and known relations between the
combustion velocity and the surface temperature on the one hand and the pressure and temperature gradient
at the surface on the other hand. These relations are obtained by scaling the steady-state dependence of the
combustion velocity and surface temperature on the pressure and initial temperature of the powder. In addi-
tion, either an explicit pressure-time dependence or the pressure eqguation must be given.

Almost all papers on the theory of nonsteady-state combustion are devoted to investigating the effect
of changing pressure on the combustion velocity of the powder, However, other factors must be taken into
account similarly which affect the combustion velocity through the gas phase. The most important of these
is the flow rate of gases tangential to the combustion surface. It is well known (see, for example, [3]) that
the flow of gases over the surface of the powder can alter its rate of combustion. Thisphenomenonis known
in the literature under the name of blowing or erosive combustion. It is obvious that in the case of a time-
variable flow, the thermal inertness of the solid phase depends on the finite retardation of the combustion
velocity relative to the magnitude of the flow at the instant being considered.

1. Basic Relations of the Theory of Nonsteady-State Combustion

We shall assume the well-known steady-state laws of erosion, i.e., the dependence of the combustion
velocity of a fuel u° and its surface temperature T,° on the initial temperature T, and the rate of erosive
flow G°:

w = u (Ty, &), Ty = Ty (To, G°) (1.1)

By means of the expression for the temperature gradient near the surface of the powder under steady-
state conditions

=TTy (1.2)

where % is the temperature conductivity of the solid phase, the steady~state relations {1.1) can be converted
to the dependence of the velocity of combustion and surface temperature on the gradient and rate of erosive
flow:
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w=u (P, ), To=T¢(F, 6o (1.3)

In the nonsteady-state case, when the flow rate is changing, the latter expressions remain valid as
Eq. (1.3) represents the relation between quantities which refer to the inertialess region (the surface of
the powder and the gas phase are inertialess). Therefore, the superscripts (degree symbols) defining the
stationarity can be discarded.

Similarly, the other factors which affect the combustion velocity by means of the inertialess com~
bustion zones can be taken into account (the flow of radiation absorbed wholly in the gas phase at the sur-
face of the fuel serves as an example).

Before setting down the system of equations for the theory of nonsteady-state combustion, we intro~
duce dimensionless variables. If u® is a certain value of the combustion velocity (for example, initial or
average) corresponding to the pressure p° and flow rate G° under steady-state conditions, then the dimen~
sionless combustion velocity, coordinates,and time are written in the form

V= — g:’:x, rz%ﬁt (1.4)

u® !

where x and t are the normal coordinates and time, The temperature inside the powder and also the gra-
dient and temperature at the surface are represented conveniently in the form

et - 1 _ Ti—Te 1.5
0= g7 ?= g b= (1.8)

where T{ is the surface temperature corresponding to the velocity u°, pressure p° and flow rate G°. Finally,
the dimensionless pressure and rate of tangential flow can be introduced as

1 ==p/p°, ge=G/6 (1.6)

In these variables the problem of the theory of nonsteady-state combustion of a powder is formulated
in the following way: to find the combustion velocity v(7) from the thermal-conductivity equation, taking
account of the thermal inertness of the condensed phase

® o 0

w=m v (<O (1.7)
with initial and boundary conditions
(L 0)=108,(8), O8(—c0, V=0, 8(0, 1)=10 (1.8)
for the conditions that the relations
v=0v(p. M 8y C=0(p, M, g) (1.9)
and also the dependence of the pressure and erosive flow on the time »
n =1 (1), g=¢g(v) (1.10)

are specified.

If the process of nonsteady~state combustion takes place in a chamber, then instead of the latter ex~
pressions differential equations must be written which satisfy the functions n (1) and g(r} and alse the cor-
responding initial conditions, In the case of variability of these functions throughout the volume of the cham-
ber, the coordinates of a point of the combustion surface also enter into the problem.,

In solving a problem in this setting, together with the combustion velocity the nonsteady-~state tem-
perature distribution in the powder thickness 6 (£, T) must be found. This function is a by-product of the
theory, as it is not essential for solving problems of internal ballistics (excepting certain special prob-
lems). The basic problem of the theory of nonsteady~state combustion consists in predicting the behavior
of the combustion velocity v(r) for the given relations 7 (r) and g(r) (or one of them). We shall transform
the theory into a form in which there is no extraneous function of the two variables {from the point of view
of internal ballistics),
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2. Integral Equations for Nonsteady-State

Combustion Velocity

Agsuming that 9 =0 is to the right of the powder surface (£ > 0), we apply a Fourier transform to the
thermal-—condu_ctivity equation (1.7):

0

Fe,v)= { 0 nema (2.1)
Taking account of the boundary conditions, the equation for the transformed function will have the
form
B (ki) F = — v0 + kD (2.2)
with the initial conditions
G
Fk, 0y = § 00(8) et 2.3)

X3

The linear equation (2.2) has the solution

F(k, 1) = S[(p(r’) — v (v) O (') + ik (v)] exp [— k2 (v — ') — ikl dT + F (k, O)exp (— kv —ikJ)  (2.4)

i

where

= S v () dv", J= Sv(r") dir (2.5}
1]

T

Applying the inverse transform to Eq. (2.4):

o

BE, 1) = o S F(k, ©) e di (2.6)

we obtain
I S (O PP 1/ G R W o S L U PP vy ) 9.7
0 V=577 {§(cp v + Tl ) oxb o) Fime Ty | wem =) @.7)

There are three unknown functions of time in this expression — the velocity, gradient, and tempera-
ture at the surface. Two relations (1.9) between them are sufficient to determine them andto find 9 (£, 7). How-
ever, the relations between v, 4, and ¢ can be obtained if Eg. (2.7) is used at the point £=0, i.e.,
at the powder surface. For this it must be remembered that when £=0, the temperature undergoes
a discontinuity (to the left it is equal tod, and to the right it is zero); substituting £=0 in Eq. (2.7),
the root mean-square of the equation at the same time must be multiplied by two. We then have

¢

o O —r w4 —@tr, (2.8)
B(r) = Vfc{é(q) v - 2(T_,E,))exp ) V;:?+ 7 tsmeo(u)exp = u}
Taking account also of the transient relations
v=v(p, n 8, S=70(p m g 2.9)

we have a closed system for determining any of the functions v, ¢, or ¢ with respect to the given relations
n(r) and g{r).

If necessary, the temperature distribution in the powder at any instant of time also can be found from
Eq. (2.7).

The most interesting quantity is the combustion velocity. If the explicit form of the functions (2.9) is
known, then it will be possible always torepresent Eqs. (2.8) and (2.9) in the form of a single integral equa~
tion for v(r), the value of which at a given time will depend on the entire history of change of the external
parameters 7 (7) and g(r). The equation is nonlinear, as in the first place the thermal conductivity in the
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starting equation is a nonlinear term, corresponding to the convective flow of heat and, secondly the
relations in Egs. (2.9) in the general case are nonlinear.

In solving problems of internal ballistics, Eq. (2.8) is preferable to the original system of Eqgs. (1.7)~
(1.10) for the following reasons. First of all, there is a need for finding the appropriate function of the two
variables 8(&, 7). Obviously, this reduces to a considerable simplification of the numerical solution of
problems which have no analytical solution. Further, a number of problems of nonsteady-state combustion
theory can be solved by expansion in series with respect to a small parameter, say, with respect to the
amplitude of the harmonically varying pressure. In this case, the use of the integral equation leads to a
considerable simplification of the calculations — the calculations will not involve a different kind of correc-
tion to the steady-state temperature distribution. Finally, the meaning of the equation obtained consists
in that it closes the system of equations of internal ballistics in which the pressure and combustion veloc~
ity are included in other quantities, When they are constant or are changing slowly (quasisteady-state con-
ditions), the system of internal ballistics equations is closed by the steady-state relation u°=(p°, Ty). In
the nonsteady-state case this relation must be replaced by the integral relation (2.8) with the supplementary
conditionsof Egs. (2.9). Of course, the model of the theory in the form of Egs. (1.7)~(1.10) can be used also
for the same purpose; however, in this case the system of internal ballistics equations is considerably more
complicated, as the additional function of two variables is involved — the temperature within the bulk of
the powder.

3. Linear Approximation, Steady-State Conditions

of Fluctuating Combustion Velocity

Let us suppose that the pressure is varying according to the harmonic law
n=1+mncosor, n<1

We shall find in linear approximation the steady~-state conditions for the combustion velocity. This
condition corresponds to 7 —«, when the effect of the initial conditions disappears. The term of the inte-
gral equation which contains the initial temperature distribution vanishes because of the factor 1/V7. In
linear approximation the method of complex amplitudes can be used, i.e., it is assumed that

=14 e, v=1- vei*
=14 ¢, O=1+ Gt

The following relations are obtainedfrom Eqgs. (1.9) when g=const between small corrections:

. k §—w . r 5 +u 3.1
Ul_k—}—r-—i(Pl_i_k-{—r—inl’ ﬁl_k—f—r——1(P]'_ Frr—1 (8.1)
. ° d1n w° _jorye __[dlnw (3.2
k= —TO)( aTq )p’ r_( 0T )p’ V_{31HP>T¢ )
1 o7 e, Ty
b= rr=19) (61np)n’ 8=y — VM

The integral I which occurs in the equation has the form
I:T——'I‘T’—!—Il, 11"_——%(6.““—8{“”')
If we substitute this expression in Eq. (2.8) and retain only terms of zero or first order, we obtain

. 101 B B e B o (T — €T v—t  dv
Lt Bheter = ":S[§+ (q’l“‘ ”1_TT'¢'E>€ % ¢ T e P TT i

Va

The integrals which occur in this expression must be taken for the condition 7 — », After integration
we have

m v1 2 v1 o (3.3)
0 = ((Px~"1—7~~m)‘2m—m e

t=— et VT,

588



We obtainfrom Egs. (3.1) and (3.3) the final relation between the amplitudes of the combustion velocity
and the pressure [4]:

v 48z
T—ktz(r ¥ k/io) 1 (3.4)

U1=

The amplitude of the combustion velocity in the case of a harmonically varying tangential stream of
gas can also be obtained quite similarly. Usually, the effect of the flow velocity on the combustion velocity
starts to be expressed after a certain threshold value of the flow Gy.. We shall suppose that the flow G
changes harmonically but in such a way that its minimum value exceeds the threshold value. Then,

=1 + gleimt

and the expressions for v, ¢, and ¢ will have the previous form so that their unique values will correspond
to the steady~state cycle for a flow value of G°.

It is obvious that calculations similar to those above will give the relation between v, and g,, similar
to Eq. (3.4):

v 8z
f—~k+z{ +- ¥ io) 81 {3.5)

Uy ==

where the primed quantities are related with the derivatives of the combustion velocity and the surface tem~
perature by the initial temperature and the tangential flow at the point corresponding to the steady-state
cycle:

k’:(Tlo—To)(a%n&e:)G, r’m(anc 3 v o= (@h’nﬁ )T“

aTo BT Je? BTy
. 1 ar° L % 5 BRI 3.6
”“Tf-n(alna)n* =Gy =V —wk (8-6)

The quantities k' and v' usually are measured in experiments to investigate erosive combustion under
steady-state conditions. In order to solve the problem of nonsteady-state blowing, data are also necessary
concerning the dependence of the surface temperature on the initial temperature and the tangential flow.

4. Linear Approximation, Transient Process

Under steady-state conditions the integral equation, in essence, need not be solved as the nature of
the dependence of the combustion velocity on time is known. We shall proceed now to the case of solving

the integral equation. We shall consider the combustion process with varying pressure in linear approxima-
tions

m=14n (@), n<t
and we shall take the initial temperature distribution in the form
B, (5) = &

which corresponds to steady-state conditions when p= 1. The combustion velocity, gradient, and temperature
at the boundary differ little from unity, i.e.,

ve=1 4o, @e=1+4¢, =1+, un~¢p~%h~n<1

The integral equation (2.8) in linear approximation assumes the form

1-{.@1_—_—.%8[_;..,3‘_@1_1;1_%_{__%‘(.___i___é‘y‘expr'zt dt’

T Vi=v
0
. 1 io Jl(’fmu) -—(u—[—'c)‘z ’ 4'1
T 5 {1—— o ]exp  du 4.1)
o
L=Sv@ya, 1={ua)a
T’ 0
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After integration (in the term containing I, we change the order of integration), we obtain
= o Do Tt 2 {1 ont (L2 e 4.2
ﬂl_VR(g((Pl 2)exp T 03{1 erf( 5 vydt 4.2)

If we substitute the expressions for #; and ¢, by v, and 7 { from Egs. (3.1), then we obtain the second-
order Volterra integral equation

_,.6.. _I___LT e 2k+r—2 . (43)
vy (T) = — M (v) 4 Vﬁ§ Ve [———zr v (T —u)
5—2v ko ”

— 2By (v — )| du+ £ (1 ~erf$) by (v —u) du

r

Solving the equation in the normal way, by a Laplace transformation, we obtain the relations between
the transforms of the velocity v,(p) and the pressure 7 (p) (here p is the Laplace variable):

ni(P) = P (p), 2(p) = —Ya VP + s (4.4)

This result was obtained earlier [5] by solving system (1.7)-(1.10).
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